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ABSTRACT

Diagrlo9i9 and analysis techniques for linear
systems have been developed and refined to a high
degrae of precision. In contrast, techniques for
the analysis of data from nonlinear systems are in
the early st~ges OE development. This paper
describes a time series technique for the
analysis of ciata !r-m nflnli:lear Cy3tcm3, T)Ie
inpuL and response time 3erie3 resulting fxnm
excitation of the nonlinear system are embedded in
1 !I-.ate spac~m ‘rtll?

‘~~;~~r]~~f,~’”c’‘“m[~’lciinq

;3
I,r.imi:edusillq 1 Icdl ‘ ,., v,lriate ,Inllly,ni:!
1:1:1,;l:]q.u!drYII1’+L(.I,I,?r(mposi!j,llI(~(:llrli([ue.=i,l“rTM
:IIC Stat,e space fruldel, Iul.ule :~ystum response~ ale
#.stimated. The *PXWYCI.P(lieurise IIt predictal)ility
.,t f.he 9ySLt2m l:J investi.qated Iiainq I.he at.ate
!ransition matrix, The (iegree of nonlinearity
present is quantitle? unlr~q tho ueometry of tIIH
‘fan~fer full~~~(Jrl lll?l[i~ in f.h~ z l~lane, Kxam[)les
f ,1}1}11icat.ion !(, ,1 Iillear :Iirlyle-,leqlpe-,)t-

::,>,,1,R.,.Iy:r-c,m, I ili~lu- I,lqr(:t.!-,1 -f 1,.P,I m
:Ilffinu C.lcillal.fir,,11)(11ineat ,ln(i II(~II!irl~af
‘!;IIJC!,I(lqrr!e,)f :rrIcI!li)m,:I,:i1lrIl111.Inre I)r(q.ntli)t.tl,l,
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sample interval for digitally sampled data.
number of lags used in embed:ing the
respon9e time 9eries.
number of lags used in embedding the input
time series.
coefficients of the ith delayed input term
in a linear time series model.
coefficients of the ith delayed response
term in a linear time series model.
angular natural frequency foc a linear
oscillator.
damping ratio for a linear oscillator.
coefficient of the anti-synmetric quadratic
term for base excited nonlinear oscillator.
coefficient of the symmetric quadratic term
for base excited nonlinear oscillator.
input acceleration to the base of the
single degree of freedom oscillator.
response acceleration for the single degree
of freeaom base excited oscillator.

INTRODUCTION

Con8ider the system described in Figure 1. This
unknown system is excited by an input time gerlea
u(t), which in the context ot mechanical vibrating
3y9tems, is typically a measured force or

accelerat’.on, anu responds with a response time
series ylt), typically acceleration or strain.
The input and res~]onsc time series, shown hure as
ur,lvariate, may in general be multivariate,
.:cn3i9ticq of multiple input9 and tesp)nsesm

Input

“(t)~ ‘“’P””’” ‘(”

1
UN!:NOWN
SYSTEM
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very effective for the analysis of linear systems
as they provide a relatively simple means of
characterizing a 3y9tem from experimentally
derived test data.

For a nonlinear system, the !lse of Fourier
transformation technique, coupled with random
excitation, produces the best fit linear estimate
af the systems beha~’ior.

Fitting a linear model to a dynamic system is
appropriate if the system’s behavior is nearly
linear. For strongly nonlinear systems, however,
the transfer function does a poor job of modelling
che real system, either in terms of the etifective
number of degrees of freedom or in terms of
prediction of the 3ystem’3 behavior. In fact,
nanlinear systems behave in a manner fundamentally
different and more complex than do linear systems.
The principle of superposition holds for linear
systems, making it easy to separate transient and
gteady 9tate system L-esponses, For nonlinear

systems, however, superposition does not hold, 30
the simplification oi a re9ponse into transient
and steady state components cannot be made in the
3ame manner . Further, nonlinear systems are
frequency creative. A linear system excited by a
frequency f. responds at the same frequency f,), ln
contrast, nonlinear sy9tems readily transfer
energy between frequencies. An example of this
energy tranafer is shown in Figure 2, where two
examples of the response wavet_oLms produced by a
st.tonqly nonlinear, mechanical oscillator (two
“ideli I~OL~n~idl systt:rn:i) .IILVUIIl)yCI5111U Wdve LIle

illustrated.
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Figura 2
Rsspon- of a Singh Dagraa of Fra@dom TWO-

W~ll-Potantial Symtmm

Even though, in two separate cases, the system is
excited by a sine wave, the response waveforms
illustrated by the solid arlci cioLted lines are not
~~eriodic. In fact this is an example of chaotic

i,rl)~vi.)1.
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Dwiation of Rmsponeas S’or A 1% Diffmr8ncm
in Stmtmm for A strongly Nonlinmar Duffing

oscillator.
Note the gradual deviation between the sulid and

dashed waveforms until two completely uncorrelated
time resporses occur.



MODEL fORMULATION .

Consider tha system which is illtatrated in Figure
1, The input and response time series are sampled
with sample interval T. The re3pon3e time series
forms an image of the state of the sy3tem. Thi3
image may be reconstructed using delay coordinates
in place of the ‘unobserved state variables~. In
a delay coordinate formulation the future response
of the ay.qtem is a function of the past responses
and cuxcent tind delayed inputs a3 shown in
Equation 1:

y(t)= f( y(t-t), y(t-ir), ... y(c-j~), u(t),
U(t-t), u(t-2T), ... u(t-lT) ) (1)

For a linear system this formulation is a linear
one and we write:

v(t)- b:y(t-~) *b;y(t-2r)+. .. +b:u (t-jr) + a)

~~:u(t-t) +azu(t-:t) 7,.. T a.u(t-lr) (2)

The formulation of Equation 2 is, of course, the
well known ARMA, or autoregressive moving average
model which is often used in the time 3eries
rnodelling of Linear :~ystems. A fundamental
problem in applying the ARMA technique to a
rlo[llinedr system is in the (determination of the
proper functional form to use in Equation 1,
5~me natural choices IL functional forms include
polynomials, radial basis functions, and

splices” ‘, ‘. The [>rnb!t~m ni tit.tinq a funct.ic,ll t,>
E~7uaLion 1 i3 e33ent l~ily ,~ne I.>t:Jurtace fitting,
riY illustrated i:]Fi,lure 4, where, for purposes nt
illl13ttat,ion, the ,:llrr~znty(!:) i:3depicted !1:1r-i
!’:rii:r i n ,~i I ~,.! !.~,, .“..,, ;,~t)lt::{ :~(t ) .11)(Jy(!:-K).
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Figura 4
A Simplifhd Illuatrmtion of thm Solution

Of Zqumtion 1 ●m ● Probl@m in Surfaca
ritting.

Here the current y(t) i3 depicted aa a function
of the input, u(t), and the past response, y(t-t) .
The surface fitting may be accomplished globally
ag shown by the shaded entire surface, or locally,
as shown by the clear elliptical region.

Jne efficient mean3 cf fikting the 3urtace of
Figure 4 is throuqh the uze of local Lechniquea.
niy polntq in the r:uiuhk)oIhooil (.)L t!)e past values

( ir which predict i,~n ~3 ,tusireti ,Ire u3er.ito 3olve
“he model. Many :url(:!.i;~nalf~llmsmay be used for
:)(:al surface fittinq, irlcludinq the linear form

●-. Equation ;!, .1s lung as the function 13
Leapplied in each region for which prediction ia
Iesired. we have used qloba. polynornlals, global
Ia(iial baSi9 functiuns, ,II~d local linear mo~iels ill
,lt.!.empl.inqto model IIolllinearsystems. Of !.tlese
:tnl,n,f-he t)est.ru,gulI.nwere ot)tained usirlq 1,-,r:al

, .:IIJ.Ir models.



the function which relatea the past to the
future . Two approaches have been taken to
alleviate this dirnensionality problem, Singular
Value Decomposition and Canonical Variate

Analysis:n. We nave used both of the3e
approaches, and both essentially provide an
estimate of the number of effective states in the
systems by using coordinates which are formed from
a linear combination of the delay coordinates. The
singular value decomposition techrique is applied
primarily to autonomous systems (systems rnodelled
using only the response signal) , and the canonical
variate analysis technique to driven systems, To
date, the most effective approach we have found
for driven systems uses the local canonical
variate analysis technique, the details of which
are described in the references::.

Iterative Prediction
The prediction of a given value y(t) from past
valueg of y(t) and u(t) is useful but for many

purposes incomplete, as we often desire to predict
future response wavefcrm3 consisting ,0f many
individual sample intervals. To achieve this form
of prediction we iteratively predict the response,
using 3ucce3sive y(t) ‘9 as past vafl.ueaof the
response as they are computed Equations 3
illustrate t!le iterative prediction process.

y(to)- f( y(to-r), y(t,l-2~), ... y(to-jt), U(tr)),
U(t)-r), u(to-2t), ... U(t,)-lt)1 (3a)

y(t +T)- f{ y(t:), y(t ~-r), ... y(tl!-(j-l)r),
U(t’+r), U(t,), u(t:_T), . . . J(t!:,-(1-l)t)) (3b)



A 3ummary of the complete algorithm
characterization and re~ponse prediction
nonlinear systems is shown in Figure 5.

i
I 1

I Wam CVA to D.tmrmAn.
Apprezlnatm nank I I

I Chock for Local Dlwargmm
of Trmjaetorima (Chino) I

rigurm 5

for
for

Algorithm for R8uponaa Prediction ●nd
Characterization of a Nonlinaar Syatam

Thi:j alcrorithm use.9 the input. !.ime series, aqsumed

F.:”.,. WI1 al. ;111 times, ,Illfi!‘Ie :e:;p{~nsct.J,mefj&tJ*:Jj,
wtli~:h is known ‘only luri:lq a trairlirlgperioci.



We have implemented the algorithm in Matlab ( a
higher levei matrix analysis language) and also,
in some form9, in C. The steps in this algorithm
are followed sequentially foz all of the examples
used in this paper.

System Characterization

The 9tep9 shown in Figure 5 define an algorithm
for the prediction of responses of nonlinear
systems using a local linear model. Since our
model is “locally” linear, at each time t! we have
an estimate of the transfer function in the form
of Equation 4.

hc = (aO +alz-~ +a2z-2 + . . . + aj z-~)/( b. +b;z-:

b2z-2 +.. blz-i) (4)

Ag we sweep through the time series response for
the system, successively computing estimates of
the current response, we h~ve, ac each time t, an
estimate of the transfer :’~nczi~n. 15 tke system
is linear, this estimate is consistent at every
time step. For a nonlinear system, in contrast,
the effective transfer function varies with the
time( fundameratally with the differing states) at
which the transfer function is computed. We cho3e
to characterize the transfer function by the
location of the transfer function poles in the z
plane. We will observe the location of these poles

in several linear and nonlinear systems.

ExAMPLES .

Single Degree of F:,>,?domLinear oscillator

A single degree I?f treedom Linear, force excited,
.:scillator is shown in Figure 6. The oscillator

has a re90nant frequency of f::=l Hz. and ~=2B
damping.



Fiqura 6a
Linear, Fozco Excitmd Sinqlm Dagrae of

Freedom Oscillator .

The oscillator is excited by band limited random
noige and 2000 samples of the input and response
waveforms used as training data for 3y9tem
characterization. Eight input and eight response
lags are used in the embedding and local CT?4
applied. The number of significant singulk
value,9 indicates that a 3tate rank of three i.
appropriate . The local linear CVA model is then
.Iupiied LO predict SJO samples into the future as
shown in Figure 6b.

//
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Sinqla Dagra@ of Frc@dom Linaar Oscillator
hcitad by Band Lhnitad Rand3m Noia9.

The measured wave:orm (solid) and predicted
waveform(dashed) can scarcely be distinguished.
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Pol@ Locations fo- tho Linmar Oscillator.

Note the tiqht clustering of the poles in two
discrete, conjugate loca-ions, indicating that a

single resonant frequency is present, as expected.

The tight clustering of the two poles shown in
Figure 6C indicaces that the 9y3tern has a single,
consistent, resonant frequency. The implication
ig, as expected, that we are observinq data f;~m a
..:.c!lrJystem,

.,tl *:@..(y’-)-’) *(l)l.”(y -y) tu(y-y)” +
~(y-y.) Iy-yrl-o (!;)
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Figura 7
Baam Excited hlonlinaar Duffing-Likm

Oscillator
In contrast to the linear oscillator this system
i3 excited usinq a base acceleration.

The oscillator is excited uainq a Gcnrad 2514
random vibration controller and input and
signals digitized usinq a f-lasscomp 5520
9y3tem. 2000 points OL the input and
signals are used in Lhe t=aining data
local linear CVA applied. A state rank of
;::ii :ll’.~~(i by ? !:*1 ::l]::,tl,r -F ,:iqlli[ ic, IIIt
‘.’dlut?s. ‘rhe modt+A iu IIsed IIJ I)redict
]esponse t-or a ~Jc~ric.~1If 100 :;amplcs.

re9pon9e
computer
respon3c
set and
three is
::irlf~l.llfll
l.tleI ime

Measurl?d
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Maamurmd ●nd Itaratad Prmdictiona for tha

Ramponsa of tha Duffing Oscillator.

The measured rasponse (solid curve) and the
Iterated prediction (Dashed curve) compa re
favorably for this form of nonlinear model, even

for an iterated predict ion.
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Figura eb.
Pola Locationm 0b8mrvmd for tha Duffing-

Likm Oscillator.
Unlike the linear system, the pole locations are
(iiffuse, indicating ~haL the nystem’3 effec~ive
resonant frequency ~hift with time, or mo re

accurately, with the instantaneous state o! the

system, Note the that the model is locally
unstable, as indicated by \Joles locally outside

the unit. circle.



relative displacement between masses 2 and 3 ig
negative. Initially k10=k12=k13=2n (l.0) and all
damping coefficients
c10=c12=c13-2~wn -2(.02)2n(l.0) .
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CASE I: X12 LINEAR
CASE II: K12 BILINEAR



plotted for the range of sample points considered.
The eigenvalues remain less than unity over the
entire range, indicating that the system is
predictable .
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THREE DOF LINEAR SYSTEM

““w’~----l
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0,99i I I

().96s~ .~
1) m -lo M) W ;[K) I2[) u) : :4) Iu“ ml

rlhm sAMP[.Es

I’igura 9c
Mal Pmrt of tha Largasf: Cigwwalua for Tha
Linaar 3 DOF Stat. Transition Matrix
Note that the largest eiqenvalue does not exceed
unity,
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Figure 9d.
tiamurad ●nd Prmdirtmd Tiraa Sarha for a

Sagmant of Thm R_spOnOm of Mass 3 for th~
Nonlinsar Caaa of ~igura 9a.

Note the relatively good comparison between the
measured (solid line) and predicted (dashed line)
responses over this time span.
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smeared into an ell~ptical range by the p]=sence

1.02;
I

1,01t

* (),%J
=

$ “.!48

< 0.97

0.%hI
(),95F

o%il-

,1
,!

:1

—.— .—

TIME SAMPLES

rigurm 9f



k12 than are the other poles, whose locations

change only minimally.

CONCLUSION
We have illustrated a method for the analysis of
nonlinear systems which makes uae of a segment of
the input and response waveforms foi the system
(training data) to build a system model. This
model provides, t!,~a~.gh geometry of the pole
locations in the z plane, an estimate of the
degree of nonlinearity of the system. Future
time series responses of the system under study
are predicted. Further application of this model
formulation to a greater variety of nonlinear
systems is planned. Some features of the model
include:

1. Training data used must explore the same
regions of the state space a9 those for which
response prediction is desired. Extrapolation to
unexplored regions of the state apace is limited.

9 Training point requirements will probably range
;etween thousands and hundreds of thousands of
points, depending on system complex~ty.

3. Multiple response measurements are desirable
when analyzing complex systems.

4. The number of 3iqnificant singular value3 gives
an estimate of the state rank of the system.

; . ‘E.unninq time l~r Lnt! ~icJoLiLhrn is un Lhe order
of 20 minutes for the systems illustrated using a
Sun Sparkstation, There are potential qains in
,Jlqorithmic efficiency which lIavc [lot yet been
utilized.

b. The alqorithm qives an indications of regions
P-f the time 3erieS where prediction may be

,Ilf[icultm
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